skip to main content


Search for: All records

Creators/Authors contains: "Cheng, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1-parameter persistent homology, a cornerstone in Topological Data Analysis (TDA), studies the evolution of topological features such as connected components and cycles hidden in data. It has been applied to enhance the representation power of deep learning models, such as Graph Neural Networks (GNNs). To enrich the representations of topological features, here we propose to study 2-parameter persistence modules induced by bi-filtration functions. In order to incorporate these representations into machine learning models, we introduce a novel vector representation called Generalized Rank Invariant Landscape (GRIL) for 2-parameter persistence modules. We show that this vector representation is 1-Lipschitz stable and differentiable with respect to underlying filtration functions and can be easily integrated into machine learning models to augment encoding topological features. We present an algorithm to compute the vector representation efficiently. We also test our methods on synthetic and benchmark graph datasets, and compare the results with previous vector representations of 1-parameter and 2-parameter persistence modules. Further, we augment GNNs with GRIL features and observe an increase in performance indicating that GRIL can capture additional features enriching GNNs. We make the complete code for the proposed method available at https://github.com/soham0209/mpml-graph. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method—VolcanoFinder—to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder. 
    more » « less
  3. null (Ed.)
    Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create comfortable, healthy and safe indoor environments. In the control loop, the technical feature of the human demand-oriented supply can help operate HVAC effectively. Among many technical options, real time monitoring based on feedback signals from end users has been frequently reported as a critical technology to confirm optimizing building performance. Recent studies have incorporated human thermal physiologysignals and thermal comfort/discomfort status as real-time feedback signals. A series of human subject experiments used to be conducted by primarily adopting subjective questionnaire surveys in a lab-setting study, which is limited in the application for reality. With the help of advanced technologies, physiological signals have been detected, measured and processed by using multiple technical formats, such as wearable sensors. Nevertheless, they mostly require physical contacts with the skin surface in spite of the small physical dimension and compatibility with other wearable accessories, such as goggles, and intelligent bracelets. Most recently, a low cost small infrared camera has been adopted for monitoring human facial images, which could detect the facial skin temperature and blood perfusion in a contactless way. Also, according to latest pilot studies, a conventional digital camera can generate infrared images with the help of new methods, such as the Euler video magnification technology. Human thermal comfort/discomfort poses can also be detected by video methods without contacting human bodies and be analyzed by the skeleton keypoints model. In this review, new sensing technologies were summarized, their cons and pros were discussed, and extended applications for the demand-oriented ventilation were also reviewed as potential development and applications. 
    more » « less
  4. We report on the use of extreme ultraviolet (XUV, 30.3 nm) radiation from the Free-electron LASer in Hamburg (FLASH) and visible (Vis, 405 nm) photons from an optical laser to investigate the relaxation and fragmentation dynamics of fluorene ions. The ultrashort laser pulses allow to resolve the molecular processes occurring on the femtosecond timescales. Fluorene is a prototypical small polycyclic aromatic hydrocarbon (PAH). Through their infrared emission signature, PAHs have been shown to be ubiquitous in the universe, and they are assumed to play an important role in the chemistry of the interstellar medium. Our experiments track the ionization and dissociative ionization products of fluorene through time-of-flight mass spectrometry and velocity-map imaging. Multiple processes involved in the formation of each of the fragment ions are disentangled through analysis of the ion images. The relaxation lifetimes of the excited fluorene monocation and dication obtained through the fragment formation channels are reported to be in the range of a few tens of femtoseconds to a few picoseconds. 
    more » « less
  5. null (Ed.)